首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   15篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   18篇
  2012年   25篇
  2011年   29篇
  2010年   14篇
  2009年   18篇
  2008年   22篇
  2007年   14篇
  2006年   16篇
  2005年   7篇
  2004年   14篇
  2003年   10篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
排序方式: 共有318条查询结果,搜索用时 781 毫秒
91.
The evolution of selfing in hermaphrodites has been studied to reveal the demographic conditions that lead to intermediate selfing rates. Using a demographic model based on Ricker-type density regulation, we assume first that, independent of population density, inbred individuals survive less well than outbred individuals and second, that inbred and outbred individuals differ in their competitive abilities in density-regulated populations. The evolution of selfing, driven by inbreeding depression and the cost of outcrossing, is then analysed for three fundamentally different demographic scenarios: stable population densities, deterministically varying population densities (resulting from cyclical or chaotic population dynamics) and stochastic fluctuations of carrying capacities (resulting from environmental noise). We show that even under stable demographic conditions evolutionary outcomes are not confined to either complete selfing or full outcrossing. Instead, intermediate selfing rates arise under a wide range of conditions, depending on the nature of competitive interactions between inbred and outbred individuals. We also explore the evolution of selfing under deterministic and stochastic density fluctuations to demonstrate that such environmental conditions can evolutionarily stabilize intermediate selfing rates. This is the first study, to our knowledge, to consider in detail the effect of density regulation on the evolution of selfing rates.  相似文献   
92.
Endothelin (ET)-1 was originally characterized as a potent vasoconstrictor peptide secreted by vascular endothelial cells. It possesses a wide range of biological activities within the cardiovascular system and in other organs, including the brain. Also secreted by endothelial cells, nitric oxide (NO), has recently been identified as a relaxing factor, as well as a pleiotropic mediator, second messenger, immune defence molecule, and neurotransmitter. Most of the data concerning the secretion of these two agents in vitro has been collected from studies on macrovascular endothelial cells. Given the remarkable heterogeneity of endothelia in terms of morphology and function, we have analyzed the ability of brain microvessel endothelial cells in vitro to release ET-1 and NO, which, at the level of the blood-brain barrier, have perivascular astrocytes as potential targets. The present study was performed with immortalized rat brain microvessel endothelial cells, which display in culture a non transformed phenotype. Our data demonstrate that: (1) these cells release NO when induced by IFNγ and TNFα, (2) they constitutively secrete ET-1, and (3) cAMP potentiates the cytokine-induced NO release and exerts a biphasic regulation on ET-1 secretion: micromolar concentrations of 8-Br-cAMP inhibit and higher doses stimulate ET-1 secretion. This stimulation is blocked by EGTA and the calmodulin antagonist W7, but not by protein kinase C inhibitors, suggesting the involvement of the calmodulin branch of the calcium messenger system. These results suggest that cerebral microvessel endothelial cells may participate in vivo to the regulation of glial activity in the brain through the release of NO and ET-1. © 1993 Wiley-Liss, Inc.  相似文献   
93.
Trypsin-dispersed heart cells were obtained from 11-day-old chick embryos. After culture as unstirred suspensions in dimethylsulfoxide-containing medium, spherical aggregates of cells beating spontaneously and apparently synchronously for months were obtained. Two kinds of cell were characterized by electrophysiological recordings: (1) cells with a slow rate of depolarizing phase showing tetrodotoxin-resistant action potential and blocked by D 600 (‘slow’ cells); (2) cells with high value of rising phase which was strongly decreased by tetrodotoxin and in which D 600 provoked uncoupling of excitation-contraction (‘fast’ cells).Toxin II from Androctonus australis scorpion venom increased the duration of action potential, which was ascribed to a slowing down of Na+ current inactivation and enhance the maximum rate of depolarization, especially in slow cells. Effects were antagonized by tetrodotoxin in both fast and slow cells. Washing experiments confirmed the results of previous studies, namely that tetrodotoxin and scorpion toxin bind to different receptors. It is concluded that slow cells with tetrodotoxin-resistant action potential contain latent fast Na+ channels that are revealed (activated) by toxin binding to the membrane.  相似文献   
94.
The brain distribution of the enantiomers of the antimalarial drug mefloquine is stereoselective according to the species. This stereoselectivity may be related to species-specific differences in the properties of some membrane-bound transport proteins, such as P-glycoprotein (P-gp). The interactions of racemic mefloquine and its individual enantiomers with the P-glycoprotein efflux transport system have been analysed in immortalised rat brain capillary endothelial GPNT cells. Parallel studies were carried out for comparison in human colon carcinoma Caco-2 cells. The cellular accumulation of the P-glycoprotein substrate, [(3)H]vinblastine, was significantly increased both in GPNT cells and in Caco-2 cells when treated with racemic mefloquine and the individual enantiomers. In GPNT cells, the (+)-stereoisomer of mefloquine was up to 8-fold more effective than its antipode in increasing cellular accumulation of [(3)H]vinblastine, while in Caco-2 cells, both enantiomers were equally effective. These results suggest that racemic mefloquine and its enantiomers are effective inhibitors of P-gp. Furthermore, a stereoselective P-glycoprotein inhibition is observed in rat cells but not in human cells. The efflux of [(14)C]mefloquine from GPNT cells was decreased when the cells were incubated with the P-gp modulators, verapamil, cyclosporin A or chlorpromazine, suggesting that MQ could be a P-gp substrate.  相似文献   
95.
Endothelium of the cerebral blood vessels, which constitutes the blood-brain barrier, controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells using two rat brain endothelial cell lines (RBE4 and GP8), we report in this paper that ICAM-1 cross-linking induces a sustained tyrosine phosphorylation of the phosphatidylinositol-phospholipase C (PLC)gamma1, with a concomitant increase in both inositol phosphate production and intracellular calcium concentration. Our results suggest that PLC are responsible, via a calcium- and protein kinase C (PKC)-dependent pathway, for p60Src activation and tyrosine phosphorylation of the p60Src substrate, cortactin. PKCs are also required for tyrosine phosphorylation of the cytoskeleton-associated proteins, focal adhesion kinase and paxillin, but not for ICAM-1-coupled p130Cas phosphorylation. PKC's activation is also necessary for stress fiber formation induced by ICAM-1 cross-linking. Finally, cell pretreatment with intracellular calcium chelator or PKC inhibitors significantly diminishes transmonolayer migration of activated T lymphocytes, without affecting their adhesion to brain endothelial cells. In summary, our data demonstrate that ICAM-1 cross-linking induces calcium signaling which, via PKCs, mediates phosphorylation of actin-associated proteins and cytoskeletal rearrangement in brain endothelial cell lines. Our results also indicate that these calcium-mediated intracellular events are essential for lymphocyte migration through the blood-brain barrier.  相似文献   
96.
97.
Plant chemical defenses and escape from natural enemies have been postulated to select for dietary specialization in herbivorous insects. In field and laboratory bioassays, we evaluated the effectiveness of intact and chemically modified larval shield defenses of the generalist Chelymorpha alternans and the specialists Acromis sparsa and Stolas plagiata (Chrysomelidae: Cassidinae) against three natural predators, using larvae reared on two morning glory (Convolvulaceae) species. We assessed whether: (1) specialists were better defended than generalists when both were fed and assayed on the same plant; (2) larval shield defenses were chemical, physical, or both; and (3) specialists exploit chemistry better than generalists. Live specialist larvae survived at higher rates than did generalists in predator bioassays with the bug Montina nigripes (Reduviidae), but there were no differences among groups against two species of Azteca ants (Hymenoptera: Dolichoderinae). Solvent leaching by H2O or MeOH significantly reduced shield efficacy for all species compared to larvae with intact shields. In contrast, freshly killed specialist larvae exhibited significantly lower capture rates and frequencies than the generalists. Although solvent leaching significantly reduced overall shield efficacy for freshly killed larvae of all species, the pattern of leaching effects differed between specialists and generalists, with H2O-leaching having a greater impact on the specialists. The overall vulnerability of the generalists appears due to lower chemical protection, which is ameliorated by increased escape behaviors, suggesting a selective trade-off between these defensive components. These experiments indicate that shield defenses are essential for larval survival and that specialists are superior at exploiting plant compounds residing in the aqueous fraction. Our results support the hypothesis that diet-specialized herbivorous insects have more effective defenses than generalists when both feed on the same plant due to the differential ability to exploit defensive precursors obtained from the host. The evolution of dietary specialization may therefore confer the advantage of enhanced enemy-free space.  相似文献   
98.
We present an integrated proteomics platform designed for performing differential analyses. Since reproducible results are essential for comparative studies, we explain how we improved reproducibility at every step of our laboratory processes, e.g. by taking advantage of the powerful laboratory information management system we developed. The differential capacity of our platform is validated by detecting known markers in a real sample and by a spiking experiment. We introduce an innovative two-dimensional (2-D) plot for displaying identification results combined with chromatographic data. This 2-D plot is very convenient for detecting differential proteins. We also adapt standard multivariate statistical techniques to show that peptide identification scores can be used for reliable and sensitive differential studies. The interest of the protein separation approach we generally apply is justified by numerous statistics, complemented by a comparison with a simple shotgun analysis performed on a small volume sample. By introducing an automatic integration step after mass spectrometry data identification, we are able to search numerous databases systematically, including the human genome and expressed sequence tags. Finally, we explain how rigorous data processing can be combined with the work of human experts to set high quality standards, and hence obtain reliable (false positive < 0.35%) and nonredundant protein identifications.  相似文献   
99.
Voltage-dependant sodium channels at the axon initial segment and nodes of Ranvier colocalize with the nodal isoforms of ankyrin(G) (Ank(G) node). Using fusion proteins derived from the intracellular regions of the Nav1.2a subunit and the Ank repeat domain of Ank(G) node, we mapped a major interaction site in the intracellular loop separating alpha subunit domains I-II. This 57-amino acid region binds the Ank repeat region with a K(D) value of 69 nm. We identified another site in intracellular loop III-IV, and we mapped both Nav1.2a binding sites on the ankyrin repeat domain to the region encompassing repeats 12-22. The ankyrin repeat domain did not bind the beta(1) and beta(2) subunit cytoplasmic regions. We showed that in cultured embryonic motoneurons, expression of the beta(2) subunit is not necessary for the colocalization of Ank(G) node with functional sodium channels at the axon initial segment. Antibodies directed against the beta(1) subunit intracellular region, alpha subunit loop III-IV, and Ank(G) node could not co-immunoprecipitate Ank(G) node and sodium channels from Triton X-100 solubilisates of rat brain synaptosomes. Co-immunoprecipitation of sodium channel alpha subunit and of the 270- and 480-kDa AnkG node isoforms was obtained when solubilization conditions that maximize membrane protein extraction were used. However, we could not find conditions that allowed for co-immunoprecipitation of ankyrin with the sodium channel beta(1) subunit.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号